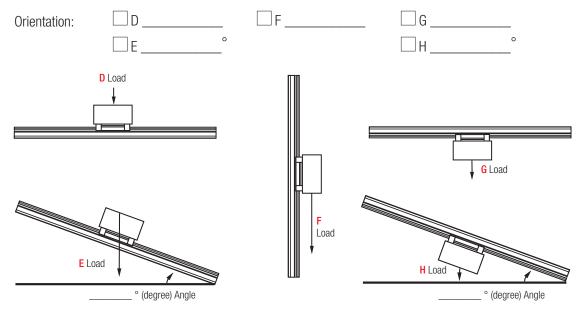
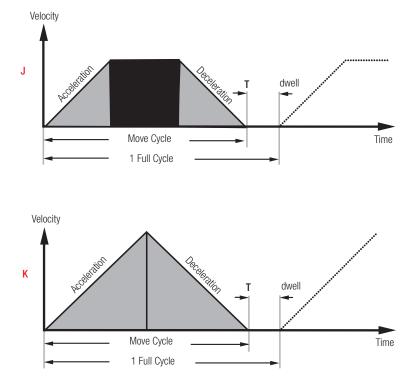

Linear Rail Checklist


Information needed to properly size a linear rail system

Our Linear Rail Systems are designed to be precision motion devices. Many variables must be considered before applying a particular rail system in an application. The following is a basic checklist of information needed that will make it easier for the Haydon Kerk Pittman Engineering Team to assist you in choosing the proper linear rail. See **order form** on page 4.

- 1. Maximum Load? _____ (N or lbs.)
- 2. Load Center of Gravity (cg) Distance and Height (mm or inches)? See illustrations (A) (B) (C) below.

3. Rail Mount Orientation? The force needed to move the load is dependent on the orientation of the load relative to the force of gravity. For example, total required force in the horizontal plane (D) is a function of friction and the force needed for load acceleration ($F_f + F_a$). Total force in the vertical plane is a function of friction, load acceleration, and gravity ($F_f + F_a + F_g$).

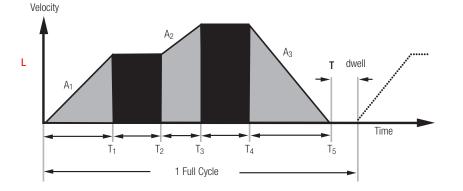

4. Stroke Length to Move Load? _____ (mm or inches)

Overall rail size will be a function of stroke length needed to move the load, the rail frame size (load capability), the motor size, and whether or not an integrated stepper motor programmable drive system is added.

www.haydonkerkpittman.com

5. Move Profile? A *trapezoidal* move profile divided into 3 equal segments (J) is a common move profile and easy to work with. Another common move profile is a *triangular* profile divided into 2 equal segments (K).

If using a *trapezoidal* (J) or *triangular* (K) move profile, the following is needed.


- a. Point to point move distance _____ (mm or inches)
- b. Move time _____ (seconds) including time of acceleration and deceleration
- c. Dwell time between moves _____ (seconds)

The trapezoidal move profile (J) is a good starting point in helping to size a system for prototype work.

A complex move profile (L) requires more information.

a. 🗌 Time (in seconds) including: T1, T2, T3, T4, T5...Tn and Tdwell

b. 🖾 Acceleration / Deceleration (mm/sec.² or inches/sec.²) including: A₁, A₂, A₃...A_n

Position Accuracy Required? _____ (mm or inches)
 Accuracy is defined as the difference between the theoretical position and actual position capability of the system. Due to manufacturing tolerances in components, actual travel will be slightly different than theoretical "commanded" position. See M.

www.haydonkerkpittman.com

7.	Position Repeatability Required?	(mm or inches)
	Repeatability is defined as the range of position	is attained when the rail is commanded to approach the same position multiple

times under identical conditions. See M.

	Repeatability	
М		
	Accuracy	

8. Positioning Resolution Required? (mm/step or inches/step)
Positioning resolution is the smallest move command that the system can generate. The resolution is a function of many factors including the drive electronics, lead screw pitch, and encoder (if required). The terms "resolution" and "accuracy" should never be used interchangeably.
9. Closed-Loop Position Correction Required? YES NO In stepper motor-based linear rail systems, position correction is typically accomplished using a rotary incremental encoder (either optical or magnetic).
10. 🗌 Life Requirement? (select the most important application parameter)
a. 🗌 Total mm or inches, or
b. Number of Full Strokes, or
c. Number of Cycles
11. Operating Temperature Range (°C or °F)
a. 🗌 Will the system operate in an environment in which the worst case temperature is above room temperature?
b. Will the system be mounted in an enclosure with other equipment generating heat?
12. Controller / Drive Information?
a. ☐ Haydon Kerk IDEA [™] Drive (with Size 17 Stepper Motors only)
 b. Customer Supplied Drive. Type? Chopper Drive L / R Drive Model / Style of Drive:
13. Power Supply Voltage? (VDC)
14. Step Resolution?* a. Full Step b. Half-Step c. Micro-Step
15 . Drive Current?* (A _{rms} / Phase) and (A _{peak} / Phase)
16. Current Boost Capability?* (%)

*NOTE: If the Haydon Kerk IDEA[™] Drive is used with 43000 Series Size 17 linear actuator stepper motor disregard items 14, 15, and 16.

www.haydonkerkpittman.com

Linear Rail Application Checklist

Upon completion, email to: info.haydonkerk@ametek.com

	don kerk
--	----------

Name			Company		
Address			City	State	_Zip
Country		Phone	Email		
4	Maximum Load?	(N or the)			
1.			ches)? See illustrations (A) (B) (C) below.		
2.	_		, or \square B and \square C		
3.	For example, total require Total force in the vertical	ed force in the horizontal plane (D) plane is a function of friction, load	d is dependent on the orientation of the load relative to the form is a function of friction and the force needed for load acceleration, and gravity ($Ff + Fa + Fg$).	0 ,	
4.	-		r inches)Overall rail size will be a function of stroke length n r programmable drive system is added.	eeded to move the load, the rail frame s	size (load capability), the
5.	Move Profile? A trapezoid into 2 equal segments (${\sf ual}\ {\sf segments}\ {\sf (J)}\ {\sf is}\ {\sf a}\ {\sf common}\ {\sf move}\ {\sf profile}\ {\sf and}\ {\sf easy}\ {\sf to}\ {\sf work}$	with. Another common move profile is	a <i>triangular</i> profile divided
	If using a trapezoid	lal (J) or triangular (K) move profile	e, the following is needed.		
	a. 🗌 Point to po	bint move distance	(mm or inches)		
	b. 🗌 Move time	e (seconds) includin	g time of acceleration and deceleration		
	c. 🗌 Dwell time	e between moves (s	seconds)		
	The trapezoidal mo	ve profile (J) is a good starting po	int in helping to size a system for prototype work.		
	A complex move p	rofile (L) requires more information	۱.		
	a. 🗌 Time (in se	econds) including: T ₁ , T ₂ , T ₃ , T ₄ , T ₅	$_5$ T_n and T_{dwell}		
	b. Acceleratio	on / Deceleration (mm/sec. ² or inc	ches/sec. ²) including: A ₁ , A ₁ , A ₁ A _n		
6.	Accuracy is defined as the		;) ical position and actual position capability of the system. Due be slightly different than theoretical "commanded" position.		
7.	Position Repeatability Re multiple times under ider		thes) Repeatability is defined as the range of positions attain	ed when the rail is commanded to appr	oach the same position
8.	Positioning Resolution Required? (mm/step or inches/step) Positioning resolution is the smallest move command that the system can generate. The resolution is a function of many factors including the drive electronics, lead screw pitch, and encoder (if required). The terms "resolution" and "accuracy" should never be used interchangeably.				The resolution is a function
9.	Closed-Loop Position Co encoder (either optical c		NO In stepper motor-based linear rail systems, position	correction is typically accomplished usin	ng a rotary incremental
10.	Life Requirement? (selec	t the most important application p	parameter)		
	a. 📃 Total mm d	or inches, or b.	Number of Full Strokes, or c. Number	of Cycles	
11.	Operating Temperature F	Range (°C or °F	7)		
	a. 🔛 Will the sy	stem operate in an environment ir	n which the worst case temperature is above room temperat	ure?	
	b. 🔛 Will the sy	stem be mounted in an enclosure	with other equipment generating heat?		
12.	Controller / Drive Informa				
		erk IDEA [™] Drive (with Size 17 Step			
		Supplied Drive. Type? Chop tyle of Drive:			
	-	(VDC)			
14*.	Step Resolution?* a.	Full Step b Half-Step	c. Li Micro-Step		
15*.	Drive Current?*	(A _{rms} / Phase) and	(A _{peak} / Phase)		
16*.	Current Boost Capability	2* (%)		ne Haydon Kerk IDEA™ Drive is used with 000 Series Size 17 linear actuator stepper	motor
www.haydonkerkpittman.com disregard items 14, 15, and 16.					